

Introduction

Today's seminar will explore the influence of landscape structure from two different angles:

- → By examining some contrasts between simple and more complex wildlife models
- → By exploring links between habitat quality, landscape structure, and population dynamics

HexSim History

Has existed in some form for about 15 years now...

- Circa 1992
 Original version began as a grad student project
- → 1995 2000 Focused mostly on landscape structure
- → 2001 Present Expanded to address multiple species / stressors

What Is It?

A SEPM that attempts to balance realism, generality, and parsimony

- **■** Life cycle composed of user-defined events
- Most events have spatial drivers
- Individual-based, with traits that can change
- Simulations can range from simple to complex

HexSim Basics

Landscape resistance to dispersal: The Great Plains agricultural matrix

Riding Mountain National Park

Study area

- Duck Mountain Provincial Park and Forest (5,000 km²)
- Riding Mountain National Park (RMNP 3,000 km²)

No

- Dispersal barriers
- Natural ecological transitions

Forest →farm fields Influence dispersal?

Study organism: Gray wolves (Canis lupus)

For which

- Habitat fragmentation
- Human-caused mortality
- Disease

may threaten long-term survival in the Riding Mountain region

Disease

Late 1970's:

- Bovine Tuberculosis (n = 2)
- Distempervirus (n = 3)

After 1992:

Sarcoptic Mange

Wildlife disease concern: wolves surrounded by dogs & coyotes

Management concern: Disease

- Inbreeding, parvovirus, distemper can reduce pup survival
- Inbreeding can reduce allelic diversity

 Possible interactions between disease, inbreeding, & reduced survival of young

Human-caused mortality

- 1987 96: 58 known
- 2001: Wolf hunting closed around RMNP; may shoot in defence of property
- Recent: shooting, poison, coyote trapping

Management concern: Connectivity

Dispersal: corridors of positive attitudes? **DUCK MOUNTAIN** PROVINCIAL FOREST RIDING MOUNTAIN NATIONAL PARK o dislike seeing wolves • like seeing wolves Δ TB positive cases

Stronen et al. 2007

Dispersal modeling with HexSim

• Examine influence of disease mortality on emigration: Pup survival reduced from 0.46 to 0.2 every 3rd, 5th and 10th years

• Examine disperser success in human-modified landscapes: Effects of mortality from roads & negative human attitudes (25%, 50%, 75%)

Dispersal modeling with HexSim

- Roads may reduce dispersal even when not barriers (no fence, low volume)
- Animals may travel extensively, but limited net dispersal (consistent with field data)

Identifying Critical Habitat for the Ord's Kangaroo Rat in Alberta

Darren Bender

Julie Heinrichs

DavidGummer

Randy Dzenkiw

Status in Canada

- Listed as Endangered in Alberta in 2002
- Up-listed to Endangered by COSEWIC in 2006

- Reasons for designation:
 - area of occupancy is < 53 km² (~ 2 km² natural)
 - < 1000 individuals range-wide in some years</p>
 - extreme seasonal population fluctuations (up to 95% mortality annually)
 - requires highly specialized habitats that are disappearing (could be within 10 years in AB)
 - Geographically isolated with small EOO

Uniquely Canadian Characteristics

Morphology – very large body size

 Physiology – only population in genus that is capable of hibernating

 Reproductive behaviour – reduced gestation and higher frequency of mating

Habitat Identification

Kangaroo rats also use secondary habitats

- secondary habitats:
 - semi-stable dunes
 - other naturally eroding sandy soils (e.g., crests of river valley)
 - sandy roads, trails, fireguards, or other anthropogenic linear features
 - margins of some agricultural fields

Example: Ord's kangaroo rat in AB

- Used RSF approach to generate predicted occurrence (habitat) map
- Validated multiple ways:
 - expert scrutiny
 - receiver operating curve (ROC) plots
 - binned rank-correlation plots
 - k-fold cross validation*
- Delineate habitat boundaries at threshold of P(occ) = 87%

Overlay Quality and Barriers

Population Model

- Spatially Explicit Population Model Software: HexSim (PATCH)
 - Free, available from the US EPA
 - Used for many high profile species, e.g.,
 Northern Spotted Owl and Gray Wolf
 - Individual-based, spatially-explicit model
 - Movements and reproductive success of individuals are tracked through time
 - Explicit interaction with the landscape
 - Simulates realistic dispersal, habitat selection, etc.

Population Model

Population Viability Analysis of Habitat Scenarios

- Biological parameters from population studies
- Simulated 450 years; 1000 repetitions
 - Allowed 50 years for initial conditions to stabilize
- Target criterion (survival and recovery):
 - Scenarios with a P.E. <10% in 100 years represented scenarios that may provide long-term persistence and recovery

Results

Results

Population Model: Baseline Scenario

- Included all habitat from thresholded RSF
- Probability of extinction
 - At year 100: 23%
 - P.E. >10% over 100 years
 - Insufficient habitat for kangaroo rat persistence or recovery (target not met)
- Distinguishes the habitat that actually contributes to population persistence

Source/sink identification

What is the risk of not incorporating quality?

- The RSF occurrence model does not incorporate quality information
- How does the model change if we do not differentiate a difference in quality between primary (natural) and secondary habitats?

Habitat Quality Scenario	Probability of Extinction (Over 100 yrs)
No Habitat Quality Differences	1%
Habitat Quality Differentiation	23%

Scenario	P.E.	Habitat Area (ha)	Change in P.E. Per 10 ha Habitat Removed
Baseline – all habitat	23%	2792.76	+ 0.08 %

Scenario	P.E.	Habitat Area (ha)	Change in P.E. Per 10 ha Habitat Removed
Baseline – all habitat	23%	2792.76	+ 0.08 %
Removed all active sand dunes	35%	68.29	+ 5.125 %

Scenario	P.E.	Habitat Area (ha)	Change in P.E. Per 10 ha Habitat Removed
Baseline – all habitat	23%	2792.76	+ 0.08 %
Removed all active sand dunes	35%	68.29	+ 5.125 %
Removed all road habitats	37%	424.14	+ 0.87 %

Scenario	P.E.	Habitat Area (ha)	Change in P.E. Per 10 ha Habitat Removed
Baseline – all habitat	23%	2792.76	+ 0.08 %
Removed all active sand dunes	35%	68.29	+ 5.125 %
Removed all road habitats	37%	424.14	+ 0.87 %
Removed all road sink habitat	22%	68.37	- 3.20 %

Habitat restoration scenario

Effect of adding primary habitat?

- adding 12 newsites decreasesP.E. by 5 8%
- about 0.5% per new dune restored

Start Simple

- Three stage classes correspond to ages 0, 1, 2
- Survival and reproduction vary with stage class
- Individuals try to aggregate into groups <= 10
- Space is not limiting

The result is exponential growth, with the growth rate tempered by the vital rates.

Add A Little Realism

- Three stage classes correspond to ages 0, 1, 2
- Survival and reproduction vary with stage class
- □ Individuals try to aggregate into groups <= 10
- Space is finite, but only affects reproduction

Two classes of individuals emerge -- Breeders & Floaters
Breeders need home ranges, which are in limited supply
Breeder populations reach a carrying capacity
Floater populations grow indefinitely

Add Additional Realism

- □ Three stage classes correspond to ages 0, 1, 2
- Survival and reproduction vary with stage class
- Individuals try to aggregate into groups <= 10</p>
- Space is finite, and affects survival & reproduction
- Resource acquisition is smoothed across 3 time steps
- Acquired fitness levels are low, medium, and high

Both floaters and group members experience density-dependent growth and a carrying capacity

Add A Pseudo-Disease Component

The disease model is over-simplified

It spreads from individual to individual

It takes >= 5 time steps to loose the infection

- The disease counter is decremented each time step
- Individuals are disease-free if the counter = 0
- The disease counter is set to 5 on exposure
- The disease is spread by birth and by contact

Population Growth Limited by Stage-Specific Reproduction and Survival, by Area and Resource Availability, and by Disease **Aging** Dispersal Survival (stage-based) **Floaters** Reproduction Join or Initiate a **New Group** Survival (fitness-based) **Breeders Decrement Disease Counter** Resource Acquisition Survival (disease-based) **Adjust Ranges Set Disease Disease Spread** Counter to 5 **Adjust Ranges Create Floaters** Census

Quick Recap

We have compared four model structures: Population growth limited by:

- Stage-specific survival and reproduction
- Plus area (space is limited)
- Plus resources (resource availability is limited)
- Plus disease (which can impact survival rates)

Now On To Spatial Structure

All of the previous results were generated in a 100×100 hexagon landscape made up of exclusively perfect quality habitat

- Habitat quality may vary from useless to ideal
- The quality spectrum may be more or less continuous
- Landscape structure may be simple or complex

A Series Of Landscape Comparisons

→ Population Size ←

Each simulation consists of 5 replicates of 100 time steps (years)

Means, and variability are illustrated

For each landscape, a simulation was run with Disease mortality = 0%
Disease mortality = 20%

A Series Of Landscape Comparisons

→ Percent Infected ←

Each simulation consists of 5 replicates of 100 time steps (years)

Means, and variability are illustrated

For each landscape, a simulation was run with Disease mortality = 20% only

Bimodal Everyone Infected Disease Mortality = 20% Few **Infected**

Quick Recap

We have looked at the impact of disease on population dynamics in 8 model landscapes

- Landscapes L, M, and Z seemed to be outliers
- Disease had minimal impact on L's pop-size
- Disease had limited impact on M & Z's pop-size
- This was mirrored in the %-infected results

Some Experiments With Connectivity

First -- add a reflecting barrier grid to landscapes A, B, and C

Second -- add an absorbing barrier region to landscape Z

Impact Of An Absorbing Barrier

Movement from the inside out is unimpeded Movement from the outside in causes death

For each landscape, a simulation was run with Disease mortality = 20% only

Quick Recap

We have looked at the impact of reflecting and absorbing barriers on the disease model

- Population size did vary significantly with landscape structure (A, B, C) and connectivity
 - When the disease lowered survival, the absorbing barrier had an unexpected impact